An Automated Model for Fitting a Hemi-Ellipsoid and Calculating Eigenvalues Using Matrices
نویسندگان
چکیده
Ellipsoid modeling is essential in a variety of fields, ranging from astronomy to medicine. Many response surfaces can be approximated by a hemi-ellipsoid, allowing estimation of shape, magnitude, and orientation via orthogonal vectors. If the shape of the ellipsoid under investigation changes over time, serial estimates of the orthogonal vectors allow time-sequence mapping of these complex response surfaces. We have developed a quantitative, analytic method that evaluates the dynamic changes of a hemi-ellipsoid over time that takes data points from a surface and transforms the data using a kernel function to matrix form. A least square analysis minimizes the difference between actual and calculated values and constructs the corresponding eigenvectors. With this method, it is possible to quantify the shape of a dynamic hemi-ellipsoid over time. Potential applications include modeling pressure surfaces in a variety of applications including medical.
منابع مشابه
A mathematically simple method based on denition for computing eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices
In this paper, a fundamentally new method, based on the denition, is introduced for numerical computation of eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices. Some examples are provided to show the accuracy and reliability of the proposed method. It is shown that the proposed method gives other sequences than that of existing methods but they still are convergent to th...
متن کاملA note on positive deniteness and stability of interval matrices
It is proved that by using bounds of eigenvalues of an interval matrix, someconditions for checking positive deniteness and stability of interval matricescan be presented. These conditions have been proved previously with variousmethods and now we provide some new proofs for them with a unity method.Furthermore we introduce a new necessary and sucient condition for checkingstability of interval...
متن کاملRobust Ellipsoidal Model Fitting of Human Heads
We report current work on methods for robust fitting of ellipsoids to the shape of the human head in three-dimensional models built from laser scanner acquisitions. A starting ellipsoid is obtained from Principal Component Analysis from mesh vertices; those regions far from the surface of the ellipsoid are penalized (outlier rejection and/or damping). A first method consists in re-calculating i...
متن کاملA note on positive deniteness and stability of interval matrices
It is proved that by using bounds of eigenvalues of an interval matrix, someconditions for checking positive deniteness and stability of interval matricescan be presented. These conditions have been proved previously with variousmethods and now we provide some new proofs for them with a unity method.Furthermore we introduce a new necessary and sucient condition for checkingstability of interval...
متن کاملDiagonal and Low-Rank Matrix Decompositions, Correlation Matrices, and Ellipsoid Fitting
In this paper we establish links between, and new results for, three problems that are not usually considered together. The first is a matrix decomposition problem that arises in areas such as statistical modeling and signal processing: given a matrix X formed as the sum of an unknown diagonal matrix and an unknown low rank positive semidefinite matrix, decompose X into these constituents. The ...
متن کامل